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This paper deals with certain questions of the theory of dynamic pro-
gramming [1} related to the realization of a chosen strategy of control
of motion. It contains the problem of selection of controlling forces
which assure the realization of a state of motion prescribed in the phase
space (or subspace) of the controlled nonlinear system, or which assure
that the nonlinear system passes through predicted states at certain de-
termined instants of time. A similar problem for linear systems was con-
sidered in a previous paper of the author (2],

1. The equations of motion of a system with continuous processes can
be written in the following form

2 1 D)y, = 2 (1) 4 ¢;(2) -

k=1
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Here, y, denote the generalized coordinates, x.(t) are given external
forces, and 7,(t) are additional external forces whose variation in time
should be selected in such a way that a prescribed motion be performed.
The symbols f.,(D) denote polynomials of D whose coefficients are given
functions of “time; D = d/dt is the operator of differentiation with re-
spect to time. The highest order of D in the polynom1als f k(D) (j =

., n) is denoted by m, for each k (k = ..., n), 1l.e. mk is the
order of the highest derivative of y, w1th respect to time which appears
on the left-hand sides of lquations (1,1).

)

The functions 3 (j =1, ..., n) on the right-hand sides of Yquations
(1.1) are certain nonllnear functions of the generalized coordinates. “e
shall assume that all these functions are continuous 1in all thleir
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variables in a closed region, and that in this region they satisfy the
Lipschitz conditions in the variables

Yo Yoo ym™ Y Yps + oo Yimn—

We note that Equations (1.1) apply also to systems which contain the
effects of usually applicable forces, which are functions of incompati-
bility. The necessary external forces are included in the given external
forces x.(t), while the forces being functions of the controlled coordi-
nates ané their derivatives are taken into account in the left-hand sides
of Equations (1.1) and also in the nonlinear functions Y-

The system of Equations (1.1) can be rewritten in the form

bin (1) 4™ + by () Y™ -+ .+ by (D) y§) =
=850 P YT Y P e YD) 250 445 (1)
L Yo YT Y Y YT (=1 (1)

where the functions Sj are linear functions of their variables.
Assuming that the determinant
At= by (t)| (1.3)

is not identically equal to zero, we obtain from (1.2)

Y =@ (ys, Yo -5 YT Y T e YD)

< lgkj(t)
+ 2y @+ 0,0+

P (Y Y e YT, Y e e YT, 1) (=1, .ony (1.4)
Here ®. are certain nonlinear functions, and B, . are the algebraic
complements of the elements bij in the determinant” (1.3).
We introduce now new variables z, by means of the relations
Zy=1Y1, Z2= Y1y -+ Zm, = YD, Lz, = YD (1.5)

where
rem g oyt e (1.6)

The linear combinations of the external forces x,(t), 7,(t), and the
functions y,, which appear on the right-hand sides of Fquations (1.4),
will be denoted in the following way
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o, By (0
Xo; () = g o a® Q)= Z N (t) m)
2, By; (1)
‘yuj (Zl, ey 2y t) = 2 AkJ(t) lPk( 1y <o« 2y t) (GJ-=61, ., Op) (17)
k=1
where
6y = my, G =My ~-Mgy ..., 0p=7r (1.8)

Equations (1.4) can now be rewritten as follows

................................ (1.9
5 —On (21, -0y 2r) = Xop () + Qo () + Yo, (205 - - . 5200 1)

Because of the linearity of the functions 0 (z;, ..., z), Equations
(1.9) can be represented in the form

NS Z a,-k_(t) z=X;() 4+ Q;O) + ¥; (1, ..., 20, 1) ¢ =1,...,r (1.10)
k=1
The functions Xu(t) Q (t), ¥ (zl, ooy 2z, t) for which u# o, (1 =1,

.., n) are identically equal to zero 1in Equatlons (1.10).

The system of scalar differential equations (1.10) can be replaced by
the matrix differential equations

tdat)z=XW)+- QM) +¥(2y,-..,2r 1) (1.11)

where z, a(t), X(¢t), A(t) and ¥(z,, ..., z_, t) are the following
matrices

2=z, a®=lax®) X@=|X;@), Q@)=]Q;@)]
Vi(zy, .o oh 2z ) =|¥i(21, ..oy 20y 1)

(1.12)

Ve denote by z(t,) = ”z (t )“ the matrix of the values of the sought
functions z .(t) at the 1n1t1al instant of time t = t;. Denoting by 6(t)
the fundamental matrix of the matrix differential equat1on

fha(t)z =10 (143

we obtain the following nonlinear matrix differential equation from the
nonlinear matrix differential equation (1.11)
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t

2 (t) = N (t, to) z (to) -+ \ N(t,7)[X (1) + Q ()idv +

t,
t
+SN(t, V)W (2, (7), ..., 2. (7). T)dv (1.14)
ll
where
N 1=9()0" (@ (1.15;

is the weight function of the matrix differential equation (1.13). The
symbol 871(t) in the expression (1.15) denotes the inverse matrix.

Since the functions X (t), Qu(t), Yu(zl, P t) are identically
equal to zero for p # 9 (I =1, ..., n), the system of scalar integral
equations equivalent to the matrix equation (1.14) has the following

form

t n
.- Z N (¢, to) 2k (ta) +§ ) N, (£, ©) [Xa, () + Qo (1)) dT
‘l n]\ =1 ty i=
+&2 Nig (6, %o, (2,(¥)s .oy 2 (0, DAY (=1, ..., 7 (116
ty =1

Substituting the expressions (1.7) for X (¢), 2 (¢) and ¥  (z,
12 1 1

.., z_, t) into Equations (1.16), we obtain

r’

zi(t) = D) N (L, to) 2 (by) -+ S 2 2 Nia, (2, Rhcme Pul [xz (V) +q,(v)+
k=1

l, 1=11i=1
P, (21 (D), 2 (), T)] T G=1,..., r) (1.7,
Denoting
n B, (1) S
;. NN _ul r=1,...,r 1.48)
wJl (tv T) é‘lei(t, T) A‘(r) (1:1,”.,”) (
o (1) = D) N (8, to) zx (to) + ZS (D a(ryde (=1, ..., 1%
k=1 ¢ 1,

we write the system of integral equations (1.17) in the form

() = ¢ (t)+2\ 2t T g, (v dr -

I==11t,
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n ¢
+ 3 S Wit D (2:(%), .-, 2 (D), )T (i=1,....r (1.20)
=11
We shall require that some of the phase coordinates of the system z,
v
(v=1, ..., m) assume given values rp. at the time t;. If the number m

v

of the phase coordinates whose values at the instant t, are prescribed in
advance is smaller than the number n of the possible additional forces,
then we assume

9, () =gq, ()= - =gq =0 (1.21)

n—m

The additional forces qsl(t), 7, (¢), ..., g, (t), which should be
n

determined in such a way that the following conditions are satisfied

§

2p, (t1) = p, (v=1,....m . (1.22)

will be assumed as step functions, i.e. having constant values in the
interval (to, tl)

q,, () =q,, () to<t<t)  (i=1,...,m) (1.23)

This choice of the functions qs‘(t) (t =1, ..., m) is, generally

i
speaking, possible because only the values of the phase coordinates :
. . . . . ‘)
(v=1, ..., m) at the time t = t, are specified, and no limitations are

imposed on the variations of the functions z, (t) (v=1, ..., m) in the
v

interval (¢, t;). We exclude from our discussion the cases in which any
one or any group of the equations in the system (1.1) are independent of
the remaining equations.

The functions zj(t) (7 =1, ..., r) sought in the interval (¢, t,)
and the unknown quantities g  (t() (i =1, ..., m) are determined by the
following system of equations: according to (1.20), (1.22) and (1.23)

5O =6+ Fiu ) 0,00 +

i=1
n !

* Z S W‘” (t’ 7) wl (Zl (T)’ CIRI zl‘(t)’ T)dT (l to<t<tlr)
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n 4

+3 S Wit D (22 (), s 2 (D, V)dT (w1, ..., m)

=11,

Here, Fjs.(t) denotes the known functions
1

F,-.i(t)=§W,-,i(t, T)dr ( ) (1.25)

i=1, ..., m
te

Equations (1.24) can be transformed in the following way. The second
group of Equations (1.24) implies

1 on
9, (fo)= 77y Kai (t1) — (1.26)
1 m t, n
TA® E Apuq(tl)g 2 prl (s DY, (21(7), .., 2 (T), T)dY
= ty =1
(i =1, m)
where
prsx (tl) Fplsz UV prﬂm (.tl)
A= - (1.27)
Pmd: (t) pmsz( 1) Fpmsm( 1)
Ko (t)) = D) Ap, e (tr) (ro, — &5, (t)] (i=1..~.,m  (1.28)
p=1
and Ap o (t)) (u, i=1, ..., m) are the algebraic complements of the
SRl )
elements Fp s. in the determinant (1.27). With the notations
psi
1 .
g (1) = 0z K (1) (=1 .m (1.29)
1 it . - 1 ,,,,, N
Usil (tu T) = A———-(tl) Z Apu."i (t1) prl (£, T) (; 1 ;n) (1 30
ot e

we reduce the expressions (1.26) to the form

o (1.31)
1 o) = b (1) — 2 & Ut (b D, (20 (D, -0 2o (1), DdT (=1, . m)
(=11

Substituting the expressions (1.31) for g  (t;) into the first group

of Equations (1.24), we obtain the following system of nonlinear integral
equations
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m n 4
5(0) =G (1) — 2 D) Fiu, (0) X Usa (t O, (21 (V) - - . 20 (%), D) v +

i=1Il=1 te
n t
L<<t<h o
+ ZS (8 T) (20 (T)s - 20 (D), T) T (for-i....,r) (1.32)
=t f/,
where
Gi(8) = ¢;(0) 5 D) Fis () s (81) G=1,...,7) (1.33:

Vie note that the number of equations in the system (1.32) decreases
if the nonlinear functions y,(z,, ..., z, t) (1 =1, ..., n) do not de-
pend on some phase coordinates z_ of the system. For example, if the non-

linear functions y, (I =1, ..., n) contain only one phase coordinate z,

Po= Y, (2 (1), 1) (le=1,...,n) (1.34)

then, according to (1.32), we have to solve the following nonlinear
integral equation with respect to the unknown function z,(t)

() = Gy () — 2 2 Fys; (t)g st (B O ¥ (26 (), T dT +

i=1 l=1
T

2

LA

3
X 1/Vkl (tv T) 1[’, (zk (T)v t) dr (th E S 1) (1 35)
1,

i

1

The remaining phase coordinates z, (p = 1,
will be expressed in terms of the ingegrals

L, k=1, R+, ..., 1)

=G, (1) — Z 2 Fos (1) S "ot (B T) W, (2k (t), Ty dv +

i=1 l=1
n t

Y S Walt, ©) ¥, (2 (1), Ddt  (<t<H) (1.36)

=11,

In this, the additional forces being investigated

qsi(t) i=1, .....m
will be according to (1.23) and (1.31)
(1.37)
n i,
45lt) - &, (t‘)-s‘ S Uaa(ts, ©) ¥, 5k (1), T) dT (itlftf‘lm)

1=1t,
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2. We shall consider now the case in which the number of additional
forces being realized in the controlled system is smaller than the number
of the phase coordinates which should assume prescribed values at a given
instant of time t = t,.

For definiteness, let us consider only one additional external force
which has to be used in such a way that the conditions (1.22) be satis-
fied, 1i.e.

Zp, (tl) = Tp, (v=1,....m)

In order to solve this problem we divide the time interval (to, tl)
into m identical or different subintervals (to, T, (T, Ty, ...,
(T t,).

m—-1°

We assume the function g _(t) of the step type, and we denote by

9,(To), q,(T1)s -+ ¢ (Tm)

its values in the respective subintervals.

Fquations (1.20), determining the motion of the system, assume the
form

m—1 o}
GO =g + D ¢, (T (t—Ti)g Wi (t, ©)dt +
=0 T
. to <t <t ”
A\ W ve @@, . a (), Td (;’0:\1,7.,1,3 2.1)
=14,
where
T()::to, Tm:t1 (22)
5o A (T — ) It —Tiyy) (=0, b om—1) (2.3)
o j0 <Y )
The conditions (1.22) reduce now to the form
m—1
ro, = &y, (1) = 2 Via (T q,(T1) +
i=0
n 4
F (Wit 09, (@ AT e m (S

1-=1 l'o

where
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Tity
VouTd= \ Wouttnmar (o "aly)  @26)
T;
It follows from Equations (2.5) that 2.7

n iy

9, (T3) = % (t) — ) g B (tn O, (22 (D), - -, 2 (1), VdT (=0,1...., m—1)

I=1t,

where
( 1) = \ Z Cpp‘l [rpp, gpll- (tl)] (i = 07 1' s, M= 1) (2'8)
p=1
1 < i =0, 1 1
- i=0,1,..., m—
=1 (tl’ 17) 21 Cpp‘inpl (tlr 17) ( l=1,...,n ) (29)
p—
Vs (To) ps(TD o o Vpa(Tn ) :
A= S e e . (210)
Vp 3(T0) P, a(Tl) e mes (Tm—l)
and~C_ . (u=1, ..., m; t=0,1, ..., m-1) denote the algebraic com-

plements of the elements V} §(T;) in the determinant (2.10).
M
Substituting the expressions (2.7) for q_(T;) into Equations (2.1),
we obtain the following system of nonlinear differential equations which
determine the variations of the phase coordinates

m-—1 n 1,
50 =T50— 2 X 1@ Falty, D9, @@, .., 2 (1), 7T
i=0 I=1 ty
n t
+ 2\ Walt, 99, ), .., 2 (), dr (PSfSh) @iy
=11,
where
t) - 2 i ([1) in (t) Gg=1,..., r) (212)
L) =1(—T) { Wi, vdr (ﬂ.:of{,f.'.,};_r.ﬁ (2.13)
Ty
If the functions ¢;(I =1, ..., n) do not depend on some of the phase

coordinates of the system z_, the number of nonlinear integral equations

P
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in the system (2.11) becomes smaller. 1f, for example, the functions ¥,
have the form (1.34)

V=P @, ) =1 .. .

then, according to (2.11), we have the following nonlinear integral
equation with respect to the unknown function z,(¢)

m—1l n

() =Te()— 2 2 () g_ﬁ (11, %) Yz (0), ¥ e +
i=0 =1
nt
+ 2 \Wat9m @@ e w<i<n (2:14)

=1}

The remaining phase coordinates can be expressed in terms of the
integrals

m—1 n

() =T, () — 2 2 %t t)g_u(tl, ) W (2 (1), T) T +
nt
+Z ngl (tyr) Y (zk (T)’T) dv (pzl’.._f0k§t1§kt;_1’.'. r) (215\

=1 te

According to (2.7) the values of the additional external force q (1),
which is a step function in the time intervals (Ti' T, +p) (=01,
., m— 1) are the following

n oy

gs (T4) = % () — 2 S_u (21, ©) Y1 (21 (1), T) dT (i=01,...m—1) (2.16)

=1y,

The method presented allows for realization of a given state of
motion in the m-dimensional phase space (z s e, zp ). In this, if the
number of the additional forces g (t) is smaller than m, the conditions
of the type (1.22) are satisfied at the discrete points t,, t,,

For the solution of the integral equations of the type (1.32) or
(2.11), which determine the additional external forces qs_(t), 1t 1is

1
necessary to apply numerical methods [3,4,5].
3. In the particular case in which only one phase coordinate z has a

prescribed value and the equations of motion contain only one nonfinear
function

Y = Pa(zx (1), 1) (3.1
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the additional external force should be selected in such a way that the
condition

25 () =T (3.2)

be satisfied.

In this case Equations (1.24) assume the form
t

z;(t) = 8; (£) + Fs (2) g5 (o) + SWJ'A &)z (1), )dr (G=1,...,7) 53

t

Tp—8p (tl) = [Jpx' (4y) ’Z;(tﬂ) -+ ngk (tlv T) 'lp)g (Zk (T), T) dx

t.

where, according to (1.25)
t
Fi(t) = ngs LOAT (=t r) (3.4)
te

From the last of Equations (3.3) it follows that

L

0t =5y o — &) —\ Wt Dm0 de]  (35)

to

while the first group of Equations (3.3) assumes the form

Fiy ) ¢
2 (0) = 8(0) + pgy |70 — &0 () —  Wanltw, 1y G (9, 9] +

te

t
+{(WaomE@ae -1 (3.6)
te

According to (3.6) we have the following nonlinear integral equation
for the unknown function z,(t)

ty
) = 80+ 72200 [0 — 85 0) — | Wi (6, 0 9 s (), ] ¢

4
+{Waton@E@ o w<i<w (3.7)
te

The remaining phase coordinates z {p = 1,
can be expressed in terms of the integrals

L, k=1, k+1, ..., 1)
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Fos®) ¢
() = 8 () + 7255y [ro— 80 () — \ Wi (0 0 (), 0 ]+

to

t
+ SWPW’ ) P (2 (%), 7) d (o<t <By) (3.8)
tﬁ

The additional external force q (t), according to (1.23) and (3.5), is

gs (2) = q4 (to) = ks () — 7p5—1(,1)* S Wor (8, 0) Pa (2 (T), D) AT (<t <11 (3.9)

to

where
ky (1) = ,—,T:(Tl)‘ [rp— gp (t1)] (3.10)

4. Ve shall consider now an application of the method to the problem
of accelerated north-seeking action of a gyrocompass with a nonlinear
restoring force.

The equations of precessional motion of a gyrocompass can be written
in the form

— Ha +IPRB+IP(1—p)8 =HUsing + Q (£)

HB + HU cos@-a - Moa® = 0, & +F 4+ Fp=0 (4.4)

Here, o 1s the azimuth angle of the spin axis, P is the spin-axis
tilt, 9 1s the angle of the fluid surface of the hydraulic damper above
the spin axis, [/ is the angular momentum of the rotor, [P is the gyro
pendulous factor, U is the earth’s angular velocity, ¢ is the latitude
of the point of observation.

Fquations (4.1) contain the nonlinear restoring force - Mo’ which re-
presents a moment with respect to the vertical axis of the gyrocompass
and which accelerates the coincidence of the gyrocompass and the
rmeridional plane. This restoring force is effective at larger deviations
of the gyrocompass as it decreases the period of the natural vibrations
of the gyrocompass for large values of a.

Here, O t) denotes the adlitional external force representing the
moment with respect to the east-west axis of the gyrocompass, imposed in
order to bring the spin axis into the meridional plane at a given instant
of time. The law of variation of this force in time will be determined
in the following.

With the notations
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{HU sin @ . HUsing . [PU cos ¢
Zy = &, ZzZB—T; Zs=ﬁ'r——pﬁ—. kz————g—
t . .8 M
() = — ‘—QI} L ) =—t, = o (4.2)
Equations (4.1) can be reduced to the following form
: R B (l—p)
BT Teosg2 T Tesg BT N )
zo + U cos @ zy = Yo (2,), Zg+ Fzy 4+ F23=0 (4.3)

The system of scalar equations (4.3) can be replaced by the matrix
equation

z+ az = q(t) - ¥ (21, 22, 2) (4.4)
where
f ' k2 _kBl—0p)
21| g 0 T Ucosg Ucosg
2= 2 g =1 Ucosg 0 0
b 2g 0 F 5 |
(4.9
7, (t) I o
gty=| 0 | (51 B2, 23) = || P (21)
Lol 0
Ye denote by N(t) = || Njk(t) || the weight function of the matrix
differential equation
z+az=0 (4.8)

Since the elements of the matrix a are constant quantities, the func-
tion N(t) is determined by the operational relation

AD ( . .,
By (4.7)
Here, 0(p) denotes the adjoint matrix of the matrix e(p), A(p) is the

determinant of the matrix e(p), while the matrix e(p) has the form
e(p)=Ep--a (4.8)

where E is the unit matrix.

The following matrix integral equation is equivalent to Equation (4%.4)
with the initial conditions
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t 1 (4.9)
2 =N@zO)+ {Ne—Dg@dr +{N ¢ —0p@ @) m(0), 2 () ar

0 0

The matrix integral equation (4.9) can be replaced by a system of
scalar integral equations which, according to (4.5), have the form

14

3 ¢
z;(t) = 2 N () 21 (0) +S Ny(tv) ¢, (v)dv + Ssz(t_T) Ps (21 (7)) dv
k=1 0 0

(=1,2,3) (4.10)

We require now that at the time t = t; the gyrocompass indicate
meridian, i.e. the conditions be satisfied:

zj(t) =0 (i=1,2,3) (4.11)
According to (4.10), conditions (4.11) assume the form
|9 3 ty
§ N (b5 = g (95 = — 3 N (0) 2 (0) — §sz (82— ) s (2 (1))
(G=123) (4.12)

The time interval (0, t,) will be divided into three equal sub-
intervals (0, T,), (T, T,), (T,, t;). We assume the function q,(t) of a
step type, and we denote by ¢,(T,)), q,(T)), q,(T,) its values in each of
these subintervals. We note that, according to (2.2), it is

TO == O, T3 = tl (4-13)

The integral equations (4.10), determining the motion of the system,
are now of the form
% t

zj(t)zg,-(t)+z g (T 1 (¢ —T) gle(t—'r)d‘r—{— Ssz(t —T) P2 (2, (1)) dr

T; 0
O<I<t; 1=1,2,3) (414)
Here
3
g () = 2 Ny () 2 (0) G =1,2,3) (4.15)
k=1

The quantities o, according to (2.3), are determined by the formulas

Si=1t+ (Tip1— D1t —Tiyy) (i=0,1,2) (4.16)
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and 1(§) denotes, as in (2.4) above, the unit step function.
The conditions (4.12) can be reduced now to the following form

I

D VT (T = —g(t) — \Nati—D ¥ (@ (@) dr (=1,2,3)
$=0

(1]
where

Titg
VaTy= { Nati—vdv  G=123i=012

T
It follows from Equations (4.17) that

4

01 (T5) = % (t) — | B (6 — 0) 9 (2 (1)) 0 (=0,1,2)
9
where
1 3
%i(t) = — 3 21 Cuiu (t) (i=0,1,2)
p=1
Ba(i—0) =1 2 Culps (4 —7) (i=0,1,2)

Vin(To) Vi (Th) Vu(Ta)
A= |Va(Te) Va(Ty) Vu(Ts)
Var(To) Var(T1) Var(T)

637

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

andC . (u=1, 2, 3; 1 =0, 1, 2) denote the algebraic complements of

the eTements V (T } in the determlnant (4.22).

Substituting the expressions (4.12) for 7,(T;) (1 =0, 1, 2) into
(4.14), we obtain the following integral equations with respect to the

unknown function z,(t)

2 (1) =T, () — Z%mﬂﬁh—ﬂ%MWWVF

Vet —w@@d vz

0

(4.23)

The generalized coordinates z,(t) anld z,(t) can be expressed as the

integrals
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2 ty

o (1) = To () — X 201 (0| Eie (1 — 0% (21 (0) dt 4

i=0 b
t
+\ Moo (¢ = ) (0 (1)) O<i<ty v=23  (4.24)
Here
2
L5 (1) = g (1) + 2 wi (02) %5 1) (/=1,2,3) (4.25)
i=0
Xa ®)=10¢—T) XNJ-I (t—1)dt (G7=1,2,3i=0,1,2) (4.26)

“1
Having determined the function z,(t) from the integral equation
(4.23), in the time interval 0 < ¢ < t,, we can calculate the values
ql(Ti) (i =0, 1, 2) from the Formulas (4.19). Tn this way we obtain the
time dependence of the additional external force ql(t) which assures the

coincidence of the gyrocompass and the meridional plane at the time
t=1,.
1

The integral equation (4.23) has been solved with the use of an
electronic computer for the following values of the parameters (the
author uses this opportunity to express his gratitude to V.A. Cherpasov
for programming the computation)

k2 = 1.53921 x 107% sec™®, p =0.38, F=1.5 x 107> sec™!

Ucos ¢ = 4.11368 x 1075 sec™!, 7 =0.4 x 1073 sec™!

tgac 2 103z, 103z, tsec 2, 10°z, 105z,

0 0.30000 4,0000 4.0000 950 —0,01466 | 0,7333 | 0.6473

50 0.27385 2.9349 3.4620 1000 —0.00262 | 0.7511 | 0,5467
100 0.24531 2.0490 3.0332 1050 0.00917 | 0.7444 | 0.4530
150 0.21483 1.3304 2.6933 1100 0.02089 | 0.7134 | 0,3675
200 0.18280 0.7628 2.4241 1150 0.03244 | 0.6581 | 0.2913
250 0.14956 0.3279 2.2105 1200 0.04378 | 0.5786 | 0.2254
300 0.11539 0.0080 2.0394 1250 0.04093 | 0.4899 | 0.1706
350 0.08054 | -—0.2130 | 1.9001 1300 0.03786 | 0.4076 | 0.1259
400 0.04521 | —0:3478 | 1.7837 1350 0.03459 | 0.3321 | 0.0902
450 0.00957 —0.4048 1.6824 1400 0.03116 | 0.2638 | 0.0622
500 —0.02621 —0.3875 1.5899 1450 0.02758 | 0.2028 | 0.0409
550 —0.06200 —0.2949 1.5001 1500 0.02386 | 0.1496 | 0.0253
600 —0.09764 —0.1200 1.4072 1550 0.02004 | 0.1042 | 0.0144
650 —0.08621 0.0848 1.3065 1600 0.01614 | 0.0668 | 0.0072
700 —0.07455 0,2606 1.1994 1650 0.01216 | 0.0377 0.0030
750 —0.06272 0.4083 1.0883 1700 0.00813 | 0.0168 | 0.0009
800 ~0.05076 0.5287 0.9756 1750 0.00407 0.0042 | 0.0001
850 —0.03873 0.6226 0.8633 1800 0.00000 | 0.0000 | 0.0000
900 —0.02668 0.6906 0.7533
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The time interval during which the gyrocompass should be brought into
meridional plane is ¢, = 1800 sec (see the figure). The initial devia-
tions are

21(0) = 0.3, 23(0) =0.004, 25 (0) = 0.004

Equations (4.23) have been solved by the method of successive approxi-
mations. As the zero approximation
29 (1) = T4 (2).

Long has been assumed. The subsequent
approximations zl(")(t) (n=1,2, ...)
EWW\\ 0022 have been determined from the expres-
ez,
\A sions
Q002 T PRIFFINNS R S
= . mesne
RN IS - (‘)Ssiz.(t;-—r)w-a‘"—“(r»dr+
; 800 1200 tsec i=0 0
t
-0002 iR +&N12(1"‘T)‘P2(Zl(n—l) (v)) dt
0

[{({ B R 1Y) (4.27)
The following values have been obtained for ql(Yb), ql(Tl). ql(Té)

g1 (T'g) = —0.73856-10"F sec?
g1 (Ty) = 0.49759-10-3 5, c !
g1 (T9) = — 0.08157-10"3 sec?

The north-seeking process of the gyrocompass is represented by the
table of the functions 2101}, zo(t), z4(t) and the diagrams of these
functions shown in the figure.
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