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This pap,er deals with certain questions of the theory of dynamic pro- 

gramming El3 related to the realization of a chosen strategy of control 

of motion. It contains the problem of sele’ction of controlling forces 

which assure the realization of a state of motion prescribed in the phase 

space (or subspace) of the controlled nonlinear system, or which assure 

that the nonlinear system passes through predicted states at certain de- 

termined instants of time. A similar problem for linear systems was con- 

sidered in a previous paper of the autnor [21, 

1.. The equations of motion of a system with continuous processes can 

be written in the following form 

t- qlj (y1, 91, . . . , zp-l), . . . , y,, g,, . . . , y;p-l), t) (j --I,.. ,I~) (1.1) 

Here, yk denote the generalized coordinates, xi(t) are given external 

forces, and Ti(t) are additional external forces whose variation in time 

should be selected in such a way that a prescribed motion be performed. 

The symbols fjR(‘) d enote polynomials of D whose coefficients are given 

functions of time; D = cl/it is the operator of differentiation with re- 

spect to time. ‘Ihe highest order of D in the polynomials Jjh(n) (j = 1, 

. . . ) n) is denoted by mk for each k (k = 1, . . . , n), i.e. mk 1s the 

order of the highest derivative of yk with respect to time whicll appears 

on the left-hand sides of Equations (1.1). 

The functions yj (j = 1, 

(1.1) are certain nonlinear 

shall assume that all these 

. . . , n) on the right-hand sides of !Iquations 

functions of the generalized coordinates. Ye 

functions are continuous in all tlleir 

csn 
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variables in a closed region, and that in this region they satisfy the 

Lipschitz conditions in the variables 

y,, 7j1, . . . ) yy-l), . . . , y,, g,, . . . ) yp’ 

We note that Equations (1.1) apply also to systems which contain the 

effects of usually applicable forces, which are functions of incompati- 

bility. lhe necessary external forces are included in the given external 

forces x.(t), while the forces being functions of the controlled coordi- 

nates an C!i their derivatives are taken into account in the left-hand sides 

of Equations (1.1) and also in the nonlinear functions vj. 

The system of Equations (1.1) can be rewritten in the form 

bj, (t) yi”l’ + bjz (t) You’d’ +- . . , + bj, (t) ykmn’ z 

= Sj (y*, g*, . e . 9 ?j$m’-‘), e e . 7 y,, ?j,, . . e , yams-‘)) + Xj (t) + 4j (t) _/ 

+ $j (y1, 51, . . . , yp-l), . . , y,, g,, . . , y?,-l), t) (id, ) n) (1.2) 

where the functions Sj are linear functions of their variables. 

Assuming that the determinant 

A’= 1 bjk (t) 1 (1 .3) 

is not identically equal to zero, we obtain from (1.2) 

?J$“j ) = CDj (yl, lj,, . . . , 7J~mm,-1), . . , yn, jj,,, . . ?/$x--‘)) -1 

n Bkj ct) 

‘- ,,?I a’ 1% @) + qk (t) t 

t- $. (Yl, p1, . . . ) yy--1), . . . ) y,, ,q”, . . . , yp--14 t)1 (/ .=1, ..!. n) (1.4) 

Here a,. are certain nonlinear functions, and Bij are the algebraic 

complemenk of the elements bij in the determinant (1.3). 

Fe introduce now new variables zi by means of the relations 

where 

,’ :: jn, ..- :n2 -!- . . .i ,a, (1.6) 

The linear combinations of the external forces xk( t), am, and the 

functions yyk, which appear on the right-hand sides of I'quations (1.41, 

will be denoted in the following way 
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n Bkj(f) 
xaj(t) = x -T--- 

k=1 A (4 xk @)’ 
n 

” Bkj (t) 
Q"j tt) = kzl m Qktt) 

',j (‘1, . ’ . ) ‘rl t, = ~ - Bkj @) qJk (q, . . . , Zf, t) 
kzl A* 0) 

(Oj = 51, . ( 5J 

where 

q = ml, a2 = ml _1- m2, . . . , an = I 

Equations (1.4) can now be rewritten as follows 

21 - z2 = 0 
. 0 . . . . 

‘InI, - qz,, . . . , Zf) = x0, (t) + Qo, (t) + yo, (Zl, . . * , zr, 1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

U;r - CD, (Zl, . . . , Zf) = xLln (t) -I- On, (q + Y,” (Zl, . . . 3 G-9 t) 

(1.7) 

(l.Sj 

(1 .!I) 

!3ecause of the linearity of the functions oj(zl, . . . . z,), Tquations 

(1.9) can be represented in the form 

5.b -1. i ajk,(t) Zk = xj (t) -I- oj (t) + Yj (Zl, . . . 9 Z,, t) (/ = l,...,r) (1.10) 
k=l 

The functions XV(t), 

. . . . n) are identically 

The system of scalar 

the matrix differential 

Q&t), P&+ ***, zr, t) for which p # al (1 = 1, 

equal to zero in Equations (1.10). 

differential equations (1.10) can be replaced by 

equations 

2 + a (t) 2 = x (t) i- Q (t) + Y (z,, . . . , zr, 0 (1.11) 

where z, a(t), X(t), q(t) and ‘t’(z,, . . . . zr, t) are the following 

matrices 

z=llzjll, a(tj=llaj~(tjII~ x(tj=IIXj(tjll~ Q(tj=UQi(tjII (2 12) 

Y (Z1, . . . t Zr, t, = /Iyj (ZIP . * * f &I 1) Ij 

We denote by z(t,) = Ilfj(t,-,)/l h t e matrix of the values of the sought 
functions zj(t) at the initial instant of time t = tO. Denoting by e(t) 

the fundamental matrix of the matrix differential equation 

f -}- a (t) z L= U (1:13) 

we obtain the following nonlinear matrix differential equation from the 

nonlinear matrix differential equation (1.11) 
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where 

N (f, z) = 8 (f) 8-L(z) (1.15j 

is the weight function.of the matrix differential equation (1.13). The 

symbol F'(t) in the expression (1.15) denotes the inverse matrix. 

Since the functions x,(t), Q,(t), YV(z,, . . . . zr, t) are identically 

equal to zero for p # al (I = 1, . . . . n), the system of scalar integral 

equations equivalent to the matrix equation (1.14) has the following 

form 
r t 72 

zj (t) L= 2 Njk (ts to) zk (to) + \ 2 1J’joi (1, r) [Xoi (z) -f Qoi (x)1 dt 4 
X=1 ;‘, is-] 

+ 5 i &a$, q%&, (q7 . * . t z,(z), z) dz (j-1, . . .,, r) (1.16’ 

1, i=l 

Substituting the expressions (1.7) for Xo.(t), Q,.(t) and Y,,(zl, 

z,, t) into Equations (1.X), we obtain' 
1 1 

. . . ) 

k-1 to t-1 i=I 

-tq,,(z,(q, .-.I zr(r),qldz (i = 1, , r) (1.27; 

Denoting 

(1.18) 

::; (t) = $J No, (t, to) zk (to) +- i i W-,, (f, t) .Tl (r)dz (i=l, . ., r)(g.l$‘, 
k=, If” 

we write the system of integral ei+uations (1.17) in the form 
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+lif wjl (ts r> $,I (21 (r)7 . . . P 5 (r)v z, & (j = 1, . , r) (1.20) 
l=l 1. 

We shall require that some of the phase coordinates of the system z 
&I 

(v = 1, . ..) m) assume given values r 
pv 

at the time tl. If the number m 

of the phase coordinates whose values at the instant tl are prescribed in 

advance is smaller than the number n of the possible additional forces, 

then we assume 

q,, (t) ES q,,(t) = . . . = q,*_m (t) = 0 (1.21) 

The additional forces qsl(t), 7sz(t), . . . . q, (t), which should be 

determined in such a way that the following cond:tions are satisfied 

ZP, (4) = rp, (v=l, . . . . m) . (1.22) 

will be assumed as step functions, i.e. having constant values in the 

interval (t,, t,) 

QSi (0 = Qai (M (to < t < tl) (i = 1, . . . , m) (1.23, 

This choice of the functions qsi(t) (i = 1, . . . , m) is, generally 

speaking, possible because only the values of the phase coordinates z 
PV 

(v = 1, . ..) m) at the time t = tl are specified, and no limitations are 

imposed on the variations of the functions z pv(t) (v = 1, . . . . m) in the 

interval ( t,, t,). Ye exclude from our discussion the cases in which any 

one or any group of the equations in the system (1.1) are independent of 

the remaining equations. 

‘lhe functions rj(t) (j = 1, . . . . r) sought in the interval (t,, t,) 

and the unknown quantities qsi(t,) (i = 1, . . . . m) are determined by the 

following system of equations, according to (1.20), (1.22) and (1.23) 
7TL 

zi Ct> G gj Ct) + 2 ‘iSi tt) Q,i CtO) + 
i=l 

to\(t<t1 
j=l, . . . . r 

(1.24) 

TP" 
- gpy (tl) = 2 Fp,Si Ctl) Q,i (to) ‘- 

i=l 
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Here, Fjs_(t) denotes the known functions 
1 

(1.25) 

Equations (1.24) can be transformed in the following way. The second 

group of Equations (1.24) implies 

Q,i (GJ = *&) KSi w - 

_L5,1 

A (h) 
Pp*iCtl) (i Wppl (tl, r) $,(zl (q> . . . 9 2, @), r)dr 

p=.1 1. I=1 
(i = 1, . . ( m) 

where 

Fr,s, (tl) Fr,s, (tl) . . . FP,rm W 

A (tl) = . . . 
F ,,,,(h) Fp,,s,(t;) : : . up,;,' 

K*i(tl) = i APp8i (tl) ['Pp - gpp (tl)l (i = 1. .-. . , m) 

p=1 

(1 .ps, 

(1.27) 

(1 .a,) 

and A pclti (t,) (i-b i = 1, . .., m) are the algebraic complements of the 

elements F 
pps i 

in the determinant (1.27). With the notations 

/CSi (tl) = (i-1. ._..m) (1.29) 

we reduce the expressions (1.26) to the form 

Substituting the expressions (1.31) for qs,(t,) into the first group 

of Equations (1.24), we obtain the following iystem of nonlinear integral 

equations 
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where 

‘;j (t) = qi (t) ?- 2 t;jSi (t) kSi (tl) 

i---l 

(j = 1, , r) (1.33: 

Vie note that the number of equations in the system (1.32) decreases 

if the nonlinear functions wI(zl, . . . . zr, t) (1 = 1, . . . . n) do not de- 

pend on some phase coordinates z 

linear functions vyl (I = 1, . . . ,’ 
of the system. For example, if the non- 

n> contain only one phase coordinate i?k 

!I?, = $ (Zk (I), I) rl2: I, , n) (1.34,l 

then, according to (1.321, we have to solve the following nonlinear 

integral equation with respect to the unknown function z,(t) 

m n 

The remaining phase coordinates z (p = 1, . . . . k - 1, k + 1, . . . . r) 
will be expressed in terms of the in egrals . e 

zo (t) -= G, (t) - i i &ei (t) i’$, (h, T) ‘i$ (zk (z>, 7) dt + 

i=1 I=1 1, 

d- $ i W,I (t, T) q+ (G (‘c), r) df Ch < t Q 11) (1.36) 
l-71 1” 

In this, the additional forces being investigated 

QSi (1) (i = 1, . . m) 

will be according to (1.23) and (1.31) 
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2. We shall consider now the case in which the number of additional 

forces being realized in the controlled system is smaller than the number 

of the phase coordinates which should assume prescribed values at a given 

instant of time t = tl. 

For definiteness, let us consider only one additional external force 

which has to be used in such a way that the conditions (1.22) be satis- 

fied, i.e. 

ZP, (a -= rP, (VL2, . . ..m) 

In order to solve this problem we divide the time interval (t,, t,) 

into m identical or different subintervals (t,, T1), (T,, I’?), . . . . 

(T,__ 1, t,). 

V!e assume the function qS( t.) of the step type, and we denote by 

Y, (l’o), 4, (1’A * . . I q, (Tvl--,I 

its values in the. respective subintervals. 

Equations (1.20), determining the motion of the system, assume the 

form 

m-1 

Zj (t) ZZ gj (t) -t 2 4, (Ti) 1 (t - Ti) f wj8 (t, z, dz + 
i=O Ti 

where 

T, = to, T,, L- t, (2.2) 

5, z-. t --i (1’. a+1 - t) 2 (t - Tisl) (1 =: 0, I , . . . . NL - 1) (2.:3) 

‘cl (E<O) 
I(k) = {, (E>O, 

(2.4) 

The conditions (1.22) reduce now to the form 
m-1 

rP” - gpy (~1) = 2 vp,,s (Ti) Q, CT{) 4~ 
i=o 

where 
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Tifl 

VP”8 (Ti) = s K,s h r) dT ( v=l, . . ..m 
i=O,1,....m--1 1 (2.6) 

Ti 

It follows from Equations (2.5) that 
(2.7) 

(i-0, I,..., m-1) 

xi @l) = +- 5 C,$ P’pp - gpfi WI (i = 0, 1, , m - 1) 

p=1 

%I (h, z) = * 5 CppiWppl (tl, f) (i = py; * . . ’ m - ‘) 
p=1 

,...,n 

VP,8 (To) VP*8 (Tl) * ’ . VP,8 P,_,) 
A = . . . * . . . . . . . . . . . . . . . 

vima p-0) vp,*m * * * Vpms(qTl_J 

(2.8) 

(2.9) 

(2.10) 

and% p i (cl = 1, . . . . m; i = 0, 1, . . . . m - 1) denote the algebraic com- 

plements of the elements VP 
IJ 
,(Ti) in the determinant (2.10). 

Substituting the expressions (2.7) for q,(Ti) into Equations (2.1), 

we obtain the following system of nonlinear differential equations which 

determine the variations of the phase coordinates 

m-1 n 

Zj (t) = l?j (t) - 2 2 Xji (t)tBir (tl, z)ql (z,(t), . . . 9 G(T), r)dz $- 

.I 

t. 

2, (z), 7) dz ( to<t<t1 j = 1, . . . . r ) 
where 

VI-* 

rj Ct) = gj Ct) + 2 Xi Ctl) xii Ct) (j=l,...,r) 

i=o 
ai 

Xji (t) = 1. (t - Ti) \ FP’j, (t, T) dt 
t 

j==t,...,r \ 

+i 
i -= O,l,...,m--l) 

(2.11) 

(2.12) 

(2.13) 

If the functions ~~(1 = 1, . . . . n) do not depend on some of the phase 
coordinates of the system z 

P' 
the number of nonlinear integral equations 
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in the system (2.11) becomes smaller. If, for example, the functions yyl 

have the form (1.34) 

$, = $1 (zk ct), t, (ISI, . ,n) 

then, according to (Z.ll), we have the following nonlinear integral 

equation with respect to the unknown function t,(t) 

m--l R 

zk (t) = ph. (t) - 2 z xki (t) [ %l (tl, z) $l (zk (‘+ r) h’ + 

i- 0 1=1 
10 

n t 

PO d t < t1) (2.14) 

l’he remaining phase coordinates can be expressed in terms of the 

integrals 

According to (2.7) the values of the additional external force q,(t), 
which is a step function in the time intervals (Ti, Ti+,) (i = 0, 1, 

. . . , m - 1) are the following 

Qs (Ti) = xi (tl) - i \%Z (tl, r) $1 (zk (t), r) dT (i=o,~,.. ..m-I) (2.16) 
I=lto 

The method presented allows for realization of a given state of 

motion in the m-dimensional phase space (z 
Pl’ .*-’ A 

z,, ). In this, if the 

number of the additional forces q, (t) is smaller than m, the conditions 

of the type (1.22) are satisfied ai the discrete points tl, t2, . . . 

For the solution of the integral equations of the type (1.32) a 

(2.11) , which determine the additional external forces 4, ,(t), it is 

necessary to apply numerical methods [3,4,5I . 
1 

3. In the particular case in which only one phase coordinate z has a 

prescribed value and the equations of motion contain only one nonfinear 

func t i on 

$S = $A (zk (t), t) (.j, ,i \ 
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the additional external force should be selected in such a way that the 

condition 

ZP (b.> = rP (3.2) 

be satisfied. 

In this case Fquations (1.24) assume the form 

zj (1) = gj (t> + J'+ (t>~s (to) + \ Wjh(t, r)% (sk(r), r) dr (j = 1, . . ., r) 

1. (3.3) 

rP 

where, according to (1.25) 
t 

Fj, (t) = \ TYj, (t, Z) dT 

ta 

(j = i,..., r) (3.4) 

From the last of Equations (3.3) it follows that 

while the first group of Fquations (3.3) assumes the form 

zj Ct> = gj Ct) + F Fw!- [rp - g, (tl) - 
PS 

ttl) {wp&, z)$A(zk (z), r,dr] + 
t. 

$ 1 Wjx (t; z) 9~ (zk (z), r) dr 
1. 

(j = 1, . . . r) (3.6) 

According to (3.6) we have the following nonlinear integral equation 

for the unknown function zk(t) 

zk (t) = gk (t) + x) [rP - g, (h) - 
Pa 

f WpA (h, z) $A (zk tz), z, dr]+ 

b’ 

The remaining phase coordinates zp(p = 1, . . . . k - 1, k + 1, . . . . r-1 
can be expressed in terms of the integrals 
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‘P tt> = gP ct> + &$ [b - g, @I) - 1 W,i (tl, T) $A (zk (z), T) dr]+ 
PS to 

‘Ihe additional external force q,(t), according to (1.23) and (3.5), is 

qs (t) = qe (t,) = k, @I) - &-J 5 WPA @I 3 7) '4'~ @k (z> 9 r) dr (to <t<t1)(3*9) 
PS 

to 

where 

k, VI) = F+ [rp - gP Vdl 
PS 

(3.10) 

4. \V?ie shall consider now an application of the method to the problem 

of accelerated north-seekin g action of a g)TOCOmpaSS with a nonlinear 

restoring force. 

The equations of precessional motion of a ,rryrocompass can be written 

in the form 

-Hcc+ZPP-~ZP(1-p)6=HUsincp+Q (t) 

H~+HlJcoscp~a+Ma3 = 0, 6+F6+Fp=0 (4.1) 

flere, ix is the azimuth angle of the spin axis, p is the spin-axis 

tilt, fi is the angle of the fluid surface of the hydraulic damper above 

the spin axis, N is the angular momentum of the rotor, ZP is the gyro 

pendulous factor, U is the earth’s angular velocity, 9 is the latitude 

of the point of observation. 

Equations (4.1) contain the nonlinear restoring force --Ma’ which re- 

presents a moment with respect to the vertical axis of the gyrocompass 

and which accelerates the coincidence of the gyrocompass and the 

meridional plane. This restoring force is effective at larger deviations 

of the gyrocompass as it decreases the period of the natural vibrations 

of the gyrocorilpass for large values of a. 

Iiere, e(t) denotes the adlitional external force representing the 

moment wit11 respect to the east-west axis of the gyrocompass, imposed in 

order to bring the spin axis into the meridional plane at a given instant 

of time. The law of variation of this force in time will be determined 

in the following. 

,,I’ ./rth the notations 
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q1 (t) x - 9, I& (ZJ = - gz;, g =- ; 

Equations (4.1) can be reduced to the following form 

(4.2) 

h-2 
21 - ccos =2 - 

1;” (1 - p) 

Lf cos cp z3 = Ql (Q 

& -1 u coscpz, = Ip2(z1), d, + Fz, + Fz, = 0 (4.3) 

The system of scalar equations (4.3) can be replaced by the matrix 

equation 

where 

; + CL2 = q (t) -t- $ (Zl, zp, z3) (4.4) 

/; 0 

a= Ucosq u 0 
0 1,‘ 

0 1 p I 

(4.5) 

IO 

he denote by N(t) = 11 Njb(t) 11 the weight function of 

differential equation 

L+nz=o 

the matrix 

(4.6) 

Since the elements of the matrix a are constant quantities, the func- 

tion N(t) is determined by the operational relation 

I:'I' (p) ---__1.: :',' (k) 
A (P; (4.7) 

Here, O,(p) denotes the adjoint matrix of the matrix e(r), A(p) is the 

determinant of the matrix e(p), while the matrix e(,n) has the form 

e (I') = EJI -I- Cl (4.8j 

where E is the unit matrix. 

The following matrix integral equation is equivalent to Equation ($..a) 

with the initial conJitions 



636 Ia.N. Roitenberg 

The matrix integral equation (4.9) can be replaced by a system of 

scalar integral equations which, according to (4.5), have the form 

zj (t) = i Njk (t> zk (0) f ( Njl (t f) (I1 (r> d z + 
k=l 

i Nj2 (t - r) 92 (21 (r)) dr 
0 0 

(/.= 1,2, 3) (4.10) 

We require now that at the time t = tl the gyrocompass indicate 

meridian, i.e. the conditions be satisfied: 

Zj (tl) = O (i=1,2,3) (4.11) 

According to (4.10), conditions (4.11) assume the form 

1, 

s Nj, (t,--)q~ (z)dr = - 5 Njk (h)Zk(O) - [Nj2(h F-Z> $,Z(ZI (r))d~ 

0 I(=1 

O (i = 1,2, 3) (4.12) 

The time interval (0, t,) will be divided into three equal sub- 

intervals (0, T1), (T,, T,), (T,, t,). We assume the function ql(t) of a 

step type, and we denote by ql(T,), ql(T1), ql(T,) its values in each of 

these subintervals. We note that, according to (2.2), it is 

To = 0, T, = tl (4.13) 

'Ihe integral equations (4.10), determining the motion of the system, 

are now of the form 

zj (t) = gj (t)+ i 91 (Ti) 1 (t - Ti) i Nj, (t - z) dr + ‘( Nj2 (t -r) $2 (21 (r)) dT 
i=o +i ci 

(0 Q t < t1; j = 1,2,3) (4.24) 

Here 

gj (t) = 5 Njk(t) zk (0) (i= I,& 3) (4.15) 
k=l 

The quantities ai, according to (2.3), are determined by the formulas 

oi=t+(Ti+r--t)l(t--Ti+3 (i = 0,1,2) (4.16) 
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and l(c) denotes, as in (2.4) above, the unit step function. 

The conditions (4.12) can be reduced now to the following form 

2 Vjl(Ti)ql(Ti) = - g, VI) - \ Nj2 PI - Tc> $2 @I WI h (i = I, 2,3) (4.17) 
4=-a 0 

where 

Ti+1 

vjl (Tt) = S Njl Ctl - z, dz (i=1,2,3;i=O,1,2) (4.18) 

Ti 

It follows from Equations (4.17) that 

(i = 0, 1,2) (4.19) 

where 

(i = 0, 1,2) (4.20) 
IL=1 

&2 VI -z)=;i- I i C,iyL, (4 - r) (i = 0, 1,2) (4.21) 
w=1 

VII (To) Vi1 (Tl) Vii (Ta) 
A = VZl (To) v21 (Tl) VZl (Tz) 

VSl (To) V3l PI) v31 (Tz) 
(4.22) 

andC (p = 1, 2, 3; i = 0, 1, 2) d enote the algebraic complements of 

the e!!iments VPl(Ti) in the determinant (4.22). 

Substituting the expressions (4.12) far 7r(T,) (i = 0, 1, 2) into 

(4.14) ) we obtain the following integral equations with respect to the 

unknown function z,(t) 

Zi (t) = Ii (t) - i Xii (t) \ Ei, (ti - Z) $2 (21 (Z)) dr + 
i=o . 

0 

+ \ NIP (t - z)‘Iciz (zl@)) dx 

0 

The generalized coordinates z,(t) and z,(t) can be expressed as the 

integrals 
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+ \ N”, (t - *) $2 (Zl CT)) dT 
,J 

Here 

!! 

z,(t) = ITo (tj - Jf xlji 

i -=o 

(t) 5 Ei, (tl - T) $2 (2, (t)) d7 + 
0 

rj (t) = gj Ct) + 2 Xi ttl) Xji Ct) 
i=n 

Xji (t) = 1 (t - Ti) \ Njl (t - IT) dT 

‘I i 

(0 d t < fl; c = 2, 3) (4.24) 

(i= 1,2,3) (4.25) 

(j=1,2,3;i=0,1,2) (4.26) 

Slaving determined the function z,(t) from the integral equation 

(4.231, in the time interval 0 < t < tl, we can calculate the values 

q&I (i = 0, 1, 2) from the Formulas (4.19). Tn this way we obtain the 

time dependence of the additional external force ql(t) which assures the 

coincidence of the gyrocompass and the meridional plane at the tirne 

t = tl. 

The integral equation (4.23) has been solved with the use of an 

electronic computer for the following values of the parameters (the 

author uses this opportunity to express his gratitude to V..4. Cherpasov 

for programming the computation) 

k2 = 1.53921 x 1O-6 
-2 

set , p = 0.38, F=1.5x10-3 -l set 

0 cr,s CJI = 4.11368 x 1O-5 sf?c --l, 5 = 0.4 x 1o-3 set -I 

*set 

0 

1:: 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 

- 

- 
0.30000 4.0000 4.0000 
0.27385 2.9349 3. /It320 
0.24531 2.0490 3.0332 
0.21483 1.3304 2.6933 
0.18280 0.7628 2.4241 
0.14956 0.3279 2.2105 
0.11539 0.0080 2.0394 
0.08054 -0.2130 1.9001 
0.04521 -0.3478 1.7837 
0.00957 -0.4048 I. 6824 

-0.02621 -0.3875 1.5899 
-0.06200 -0.2949 1.5001 
-0.09764 -0.1200 1.4972 
-0.08621 0.0848 1.3065 
-0.07455 0,2606 1.1994 
-0.06272 0.4083 1.0883 
-0.05076 0.5287 u. 97x 
-0.0X373 0.6226 0.8633 
--n.02668 0.6906 0.7533 

- 

- 
103Z2 

- 

- 

t 
set 

- 

- 

- 

- 
lOJz* 

950 -0,01466 0,7333 
1000 -0.00262 0.7511 
1050 0.90917 0.7444 
1100 0.02089 0.7134 
1150 0.03244 9.6581 
1200 0.04378 0.5786 
1250 0.04093 0.4899 
1300 0.93786 0.4076 
1350 0.03459 0.3321 
1400 0.03116 0.2638 
1450 0.02758 0.2028 
1500 0.02386 0.1496 
1550 0.02004 0.1042 
1600 0.01614 0.0668 
1650 0.01216 0.0377 
1700 0.00813 0.0168 
1750 0.00407 0.0042 
1800 0.00000 0.0000 

10% 

--- 

0.6473 
0,5467 
0.4530 
0,3675 
0.2913 
0.2254 
0.1706 
0.1259 
0.0902 
0.0622 
0.0409 
0.0253 
0.0144 
0.0072 
0.0930 
0.0909 
0.0001 
O.oooO 
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The time interval during which the gyrocompass should be brought into 

meridional plane is tl = 1800 set (see the figure). The initial devia- 

tions are 

21(O) = 0.3, za (0) = 0.004, zg (0) = 0.004 

Equations (4.23) have been solved by the method of successive approxi- 
mations. As the zero approximation 

The following values have been 

z,(O) (t) = r1 (t). 

has been assumed. The subsequent 
approximations z1 (n)(t) (n = 1,2, . ..) 
have been determined from the expres- 
sions 

z$“) (t) = r1 (t) - 

-; [%,(tl Xxi ($1 - z) @ ( zl@--ll (r)) dr + 
i==a 0 

+ \ Nu,(t - '5) qa (~l@'--~) (z)) dr 

0 

(0 <t Q t11 (4.27) 

obtained for q,(Tc), ql(T1). ql(T,) 

P1 (TOI = - 0.73856.10-8 see-1 

q1 (T,) = 0*~9759*~0-*~==-1 

91 (Tz) = - 0.08157.10-* se c-1 

The north-seeking process of the gyrocompass is represented by the 
table of the functions .zl( t), z2( t), z,(t) and the diagrams of these 
functions shown in the figure. 
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